
Cincom In-depth Analysis and Review

Web Services
in Cincom® VisualWorks®

WHITE PAPER

Table of Contents

Web Services in VisualWorks . 1

Web Services Technologies in VisualWorks 2

VisualWorks Web Services Components 4

VisualWorks Web Services Advantages 5

Cincom In-depth Analysis and Review

Web Services
in Cincom VisualWorks

WHITE PAPER

1

Web Services in VisualWorks

Web services have become a mission-critical component
of applications, supporting communications and
commerce independent of platforms and programming
languages. The technology enables companies to provide
public access to proprietary software without distributing
the software and data outside their organizations. This is
accomplished through a software interface that describes
operations that can be accessed over the network through
standardized Extensible Markup Language (XML)
messaging. Using protocols based on the XML language,
web services describe an operation to execute or data to
exchange.

Cincom VisualWorks supports web services technology
built on such existing and emerging standards as HTTP;
XML; XPath, as a language for addressing parts of an XML
document; Simple Object Access Protocol (SOAP); Web
Services Description Language (WSDL); and Universal
Description, Discovery and Integration (UDDI).

Potential web services developed in VisualWorks could be
any application: authentication, phrase translation,
currency conversion, shipping status lookup, or database
queries, to name just a few. VisualWorks imposes no
restrictions on the size of the application.

VisualWorks enables developers to create both web
services providers and requestors. The service provider is
the server side, the platform that hosts the service, while
the service requestor is the client side, the application that
is interacting with a service. The service requestor can be a
browser driven by a user or a program without a user
interface, such as another web service.

VisualWorks imposes
no restrictions on the
size of the application.

2

Web Services Technologies
in VisualWorks

VisualWorks fully supports development of web services
by implementing XML, SOAP, WSDL and UDDI standards.

XML
XML is the standard format for data exchange over the
web, and it is the essential foundation for deploying web
services via SOAP, WSDL and UDDI. The XML web services
architecture allows applications written in different
languages on different platforms to communicate with
each other.

To accommodate this use of XML in VisualWorks, a
mechanism is required for mapping XML elements and
attributes to Smalltalk objects and back again. VisualWorks
provides a robust XML-to-object framework that enables
creation of XML documents from Smalltalk objects, as well
as creation of Smalltalk objects from XML documents. This
capability is the foundation of VisualWorks web services
support.

XML-to-object mapping is based on a binding
specification, which is an XML document. From this
mapping, the engine produces prototype objects. The
objects are stored in a registry that maps the prototype
objects to tag names in the binding document. This
registry is then used by the engine to marshal and
unmarshal an XML document.

The XML-to-object mechanism supports marshaling for:

• Simple types to simple types

• Simple types with attributes to complex objects

• Complex elements to complex objects

• Elements, attributes, or text to instance variables of
Smalltalk objects

SOAP
Simple Object Access Protocol (SOAP), the
communications protocol for XML web services, is a
specification that defines the XML format for messages.
The SOAP component of VisualWorks wraps the XML
document into the SOAP envelope body, adds headers,
and sends it to another party. At the core of SOAP support
in VisualWorks is the XML-to-object mapping mechanism.
Using a SOAP binding, Smalltalk messages are marshaled
into a SOAP/XML representation for communication to a
service provider, and the XML response is unmarshaled
back into Smalltalk.

VisualWorks also provides support for WSDL, explained
in more detail in the next section. Support for WSDL
simplifies SOAP messaging in VisualWorks by
automatically producing the appropriate SOAP message,
using transformations based on a WSDL schema. However,
for situations where SOAP is needed without a WSDL
schema, developers can still write directly to the SOAP
protocols in VisualWorks.

The easiest way to use SOAP in VisualWorks is to request
services for which there is a WSDL document describing
those services. Because there is a SOAP binding for
WSDL, VisualWorks can provide bindings to map a
Smalltalk object, specifically instances of Message, to the
appropriate SOAP messages. By specifying the mappings
between a WSDL schema and Smalltalk in a transformation
method or other mechanism, the task of constructing the
appropriate SOAP messaging is automated in VisualWorks.

3

WSDL
The ability to process SOAP messages by any party
requires a services description. Web Services Description
Language (WSDL) is an XML-based language used to
describe web services, defining the interface and
mechanics of service interaction, so that other applications
can access and interact with those web services. WSDL
specifies what a request message must contain and what
the response message will look like.

A WSDL document represents a web service as a
collection of “endpoints,” or ports, that receive and
handle messages. The port description includes such
details as the protocol, host and port number used, the
operations that can be performed, the formats of the
input and output messages, and the exceptions that can
be raised.

The VisualWorks WSDL tool helps create a WSDL schema
that covers all the details necessary to interact with the
service, including message formats that detail the
operations, transport protocols, and location. Currently,
VisualWorks supports SOAP over HTTP in the WSDL
binding.

VisualWorks WSDL support provides simple mechanisms
for:

• Loading and parsing WSDL documents

• Generating mappings between XML (WSDL) elements
and Smalltalk objects

• Creating classes from user-defined object types in a
WSDL document

• Programmatically invoking a web service based on the
port information in the document

UDDI
UDDI (Universal Description, Discovery and Integration) is
a specification for information registries of web services.
To make a service available, a provider identifies the API
for that service, implements the service, and optionally
publishes the service in a UDDI directory so that potential
users can find it.

A UDDI directory entry is an XML file that describes a web
service. The registries provide information such as the
provider’s name and contact information, industry codes,
product classifications, URL and e-mail addresses, and
details about interfaces and other properties of the
services.

VisualWorks supports the UDDI version 1.0 API. The
VisualWorks UDDI component enables an application to
search existing directories and publish service descriptions
in those directories.

UDDI “inquire” and “publish” API functions are exposed
as SOAP messages over HTTP. HTTPS is used for
publishing functions that require authentication. The
implementation of UDDI support in VisualWorks is built on
top of support for SOAP, HTTP and HTTPS, providing a
very simple interface to the UDDI services. A registry is
represented as a UDDIService instance. Inquiries and
publishing requests are sent to it by sending Smalltalk
messages that correspond to messages in the UDDI API.
VisualWorks marshals the Smalltalk message as an
appropriate SOAP message and sends it to the registry.
Any response is marshaled back into Smalltalk objects for
use by the application.

4

VisualWorks Web Services
Components

The following is a list of all the web services components
available in VisualWorks to support the XML, SOAP, WSDL
and UDDI standards:

XMLObjectMarshalers
XMLObjectMarshalers is the basic XML-to-object
marshaling machinery required to support all web services
in VisualWorks. This functionality can also be used to
develop protocols other than SOAP.

SOAP
The SOAP component installs basic web services support,
specifically the SOAP bindings for XML-to-object
marshaling.

WSDL
The WSDL component adds WSDL support to SOAP for
identifying interfaces from WSDL documents.

WSDLTools
WSDLTools generates classes from a WSDL schema and a
WSDL schema from classes.

UDDIInquire
UDDIInquire installs basic UDDI inquiry services, required
for all other UDDI parcels.

UDDISearchTool
UDDISearchTool provides a GUI for the UDDIInquire
functionality.

UDDIPublish
UDDIPublish adds publishing capability to UDDIInquire.

WSDL Wizard
The WSDL Wizard guides users through the process of
exposing an existing Smalltalk application as a web
service. Functions of the WSDL Wizard include:

• Describing the operations from a given service class

• Describing the Smalltalk classes mapping to XML types

• Creating a server to run the web services

• Creating a client to make requests

• Creating and publishing a WSDL schema with the web
service description

Alternatively, given a WSDL schema, the WSDL Wizard can
generate Smalltalk classes required to access the service
the schema describes or to implement it. In this case, the
WSDL Wizard can:

• Find a WSDL description using a UDDI registry

• Load a description from the internet

• Create an XML-to-object binding

• Create Smalltalk classes from the WSDL specification

• Invoke services described in a WSDL document

XML-to-Object Binding Wizard
The XML-to-Object Binding Wizard describes the
Smalltalk classes mapping to XML types and tests the
XML-to-Smalltalk object mapping.

5

VisualWorks Web Services
Advantages

VisualWorks’ web services capabilities provide several
strong advantages to application developers.

Ease of Use
VisualWorks provides a range of capabilities that simplify,
automate and expedite the deployment and use of web
services. The VisualWorks code hides the complexity so
that the developer does not have to be a web services
expert to use the technology. The WSDL Wizard can
automatically create the client and the code to make a
request, while the only information the programmer will
need is the WSDL schema location. With this high level of
automation, a user with minimal knowledge about web
services can easily integrate the technology into any
application. Using VisualWorks’ powerful yet easy-to-use
suite of web services tools, it takes only a few minutes to
convert an existing application into a running web service.

Flexibility
The VisualWorks web services framework is easy to extend
and customize to meet the unique needs of any size
application.

Cross-Platform Portability
Web services applications in VisualWorks benefit from the
environment’s portability across a wide range of platforms.
Applications developed in VisualWorks can run on
Windows, Linux, UNIX, Mac OS/X, and even mobile
platforms like Windows CE – without requiring any
modification to the code.

Client and Server Development
VisualWorks provides full support to develop web services
client and server applications.

Compliance With Standards
VisualWorks offers full compliance with the latest web
services standards, including XML 1.0, SOAP 1.1 and
WSDL 1.1.

Interoperability
VisualWorks provides seamless interoperability with all the
popular web services implementations, including .NET,
Apache SOAP/Axis, BEA, Oracle and others. The
implementation is compliant with WS-I Basic Profile 1.0a.

For example, VisualWorks is fully interoperable with .NET
by executing against the Microsoft .NET servers. With
.NET, the preferred method of interapplication
communication is via web services. A web service
implemented in VisualWorks and available on the network
will be immediately visible to .NET developers, and will be
indistinguishable from a native .NET service. Conversely,
.NET services are easily discovered and accessed within
VisualWorks.

The Perl SOAP:Lite package is useful for testing the
interoperability of web services based in VisualWorks, and
is freely available at http://www.soaplite.com.
Interoperability with Java web services and clients can be
tested using the tools available at
http://ws.apache.org/axis/index.html.

HTTP Transport Support
HTTP 1.0/1.1 and HTTPS support includes GET and POST,
cookies, compression, chunking, keep-alive, basic
authentication, digest authentication, SSL/TLS encryption
and certificate authentication, SSL session caching, proxies
and proxy authentication.

SOA Platform
VisualWorks web services support SOA (service-oriented
architecture) for the delivery of services via the web. The
VisualWorks virtual SOA platform provides all of the
necessary components of SOA, including the host
environment, consumer environment, integration and
assembly environment, development environment,
publishing and discovery, service-level management,
security infrastructure, monitoring and measurement,
diagnostics and failure, web service protocols and
certification.

Cincom, the Quadrant Logo, Cincom Smalltalk, VisualWorks, and Simplification
Through Innovation are trademarks or registered trademarks of Cincom Systems,
Inc. All other trademarks belong to their respective companies.

© 2009 Cincom Systems, Inc.
FORM CS060421-1 12/09
Printed in U.S.A.
All Rights Reserved

World Headquarters • Cincinnati, OH USA • US 1-800-2CINCOM
Fax 1-513-612-2000 • International 1-513-612-2769
E-mail info@cincom.com • www.cincom.com • http://smalltalk.cincom.com

